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Abstract

A graduat e level course for Thermal Hydraulics (T/H) was taught through | daho State University in
the spring of 2004. A numerical approach was taken for the content of this course since the students
were fromthe | daho National Laboratory and most had been users of T/H codes. The majority of the
students had expressed an interest in learning about the Courant Limit, mass error, semi-implicit and
implicit numerical integration schemes in the context of a computer code. Since no introductory text
was found the aut hor developed not es taught from his own research and courses taught for
Westinghouse on the subject. The course started with a primer on control volume methods and the
construction of a Homogeneous Equilibrium Model (HEM) (T/H) code. The primer was valuable f or giving
the students the basics behind such codes and their evolution to more complex codes for Thermal
Hydraulics and Comput ational Fluid Dynamics (CFD). The cour se covered additional mat erial including
the Finite Element Met hod and non-equilibrium (T/H). The control volume primer and the construction
of athree-equation (mass, momentum and energy) HEM code are the subject of this paper. The
Fortran version of the code covered inthis paper is elementary compared to its descendants. The
steamtables used are less accurat e than the available commercial version writtenin Ccoupled to a
Graphical User I nterface (GUI'). The Fortran version and input files can be downloaded at

www.micr of usionlab.com.

1.0 I ntroduction

One of the mainimpediments for lear ning how to use production type codes such as RELAP5-3D®© ' is
the lack of afoundation in basic numerical methods and how they are implemented in (T/H) comput er
codes. Although code manuals provide much of the knowledge base f or the programthe user may not
know t he basics of a how a code is put toget her. Learning how such codes are f ormulated and t heir
evolution gives the user knowledge that can be used to accurat ely understand the intricacies of how
advanced codes work and t he limitations of numerical met hods. A good knowledge of numerical met hods
can also help the user understand the reasons f or complex code behavior and result in improved
dialogue between t he code user and developer. This paper will cover the basics of the implementation
of the control volume method inthe context of a Homogeneous Equilibrium Model (HEM) (T/H) code
using the conservation equations of mass, moment um and energy. This primer uses the advection
equation as atemplate. The discussion will cover the basic equations of the control volume portion of
the course inthe primer, which includes t he advection equation, numerical met hods, along with the
implement ation of the various equations via FORTRAN into computer programs and the final result for



athree equation HEM code and it s validation.

2.0 Equations

There are many texts and papers relating to the derivation and development of the equations f or mass,
moment um and ener gy. Some of these are by Smith & Dixon? and Lahey & Moody®. The conser vation
equations f or mass, momentum and energy are:
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with the equation of state as:

p=plph) (4)
with

p =density, Lbm/ft?

P =pressure, Lbf/ft?
h =enthalpy, Btu/ Lbm
V' =scalar velocity, ft/s

V =vector velocity, ft/s
t =time, sec
Q@ =heat source, Btu/ ( ft3sec)

Vol/ =——,inx for one dimension
ox

g =gravitational constant, 32.2 ft/s?
6 =angle with horizont al
C =144 in%/ {12
J =mechanical equivalent of heat 778.16 ft Lbf/Btu
K =fL/ D =dimensionless f orm loss
f =friction (dimensionless)
L,D =length (ft), diameter (ft)
Lbm ft

=——322—
9e Lbf s?

Note that there are four unknowns in the three equations of (1), (2) and (3), the density p,the

velocity I/, the pressure P and the enthalpy /7. The equation of state is the fourth equation, which
allows the solution of the four equations in the f our unknowns.



These conservation equations are developed from the Reynolds Transport Theorem and the Liebnit z
Rule as shown in Ref erence 2.0. The relations above are partial dif ferential equations since they are
functions of more than one variable, such as the state mixture density inthe state equation of

p=p(P, h).
Relations (1) through (4) can be represented by the general advection equation

of (x,t) n of (x,t)V
ot ox

=S(x,t) (5)

where f(x,t)is a continuous function with x as the spatial variable in one dimensionand t as the time. V
is an advection velocity and S(x, t)is asourcetermfor 7.

3.0 Advection Equation
For acontrol volume the material derivative is given by:

af (x,t) of a_x+g_
dt  Ox ot ot

S(x,t) (6)

or therate of change of f(x,t) is equal to the source of f(x,t),whichis S(x,t). Thisrelation can be
written as

ngﬂ:S(x,r). (7)

ot ox

The “trick” to understanding the formulation of (T/H) codes is in using Equation (7) as a “template” for
the development of each of the conservation equations relating to mass, moment um and energy. The
various met hods used in code development such as Finite Dif f erences, Finite Volumes and the Finite
Element Method (FEM) wer e developed in the cour se via the Advection Equation and used with the
HEM formulation. Time and space do not permit the discussion of the other methods used inthe
course. The discussion will be constrained to the primer on control volume met hods.

The advection equation is a hyperbolic partial dif f erential equation (pde). Writing the total dif ferential
as

df (x ¢ ).t) of (x(@)t)(dx +af(x,z‘)
at Y (dz‘j ot

and comparing this to a version of (7), wherein V is constant, the relation

o (x,t) o (x,1) _

) 9
ot o wt) ®)

is obtained. We can identity dx / dt =V and df (x (t ),t )/ dt =S (x,t). These two relations can
be integrated to get



x=W+C

f=5t+A
and (10a,b)
X =x,+Vt
f=f+S5t

af ter applying the initial conditions x (0)= X, and f (x,0)=f, .Figure 1.0 illustrates that these

relations are “characteristics” and they are lines (equation of astraight line y = mx+b) with const ant
slopes inthe x and t planes.

Slope=V

Figure 1.0

If thereis nosourceterm, S (X,f )= 0 in(9), the second equation of (10) becomes
f=f, M

wherein f isaconstant. | f we put some f(x, f)in at one end of a pipe, where the fluid is f lowing with
velocity V, we expect to get the same amount out at the other end of the pipe for the constant velocity
case. As simple as t his appears, propagating mat erial exactly may well be one of the most “dif ficult”
problems in comput ational physics.

There are three types of boundary conditions for the function f(x, ). They are:

1. Dirichlet conditions with f (x,f )=/, onthe boundary, the boundary denoted as d A
2. Neumann conditions with df / dx = g,on 0 R
3. Mixed (Robin) conditions such as of / dx +kf =g, on dR

Using (5) as atemplat e we can program f eatures of all the codes and their equation sets by using the
advection equation, dif f erenced as



of (x,t) ™ (x)-1"(x;) £ 1"
ot At At

of (x,t )V (V)" =(FV),
ox AX

onthe grid shown in Figure 2.0. This type of differencingisreferred to as “backwards” dif f erencing.
The nor n+1 superscript for the temporal derivative referstothe intervals the time domain is broken
up into, more simply called the “time step.”

The spatial interval is known as a cell, a volume or a node. Since f(x, t)is a scalar function, not a vector,
we can see a general pattern developing. | nthe example in Figure 2.0 the spatial domain is broken into
three nodes, /- 7, i and i+7. We take the length of the boxes surrounding the interior nodes asAXx , a
constant spatial interval. Node j- 7 does not need a cell (Ilength) since it is a boundary node with
constant properties. The time domain is also broken into constant intervals (or steps), given

asAt =t™" —t".For the three cells in Figure 2.0 we write two equations for the interior nodes as

of (X,,l‘)+vf (X,-,fn+1)—f (X,-_1,fn):f/n+1 _fr f,”+1 _f/f1 _

V- 0
ot Ax At Ax
and
n+l n ‘n+1 _fn
f/‘+1 f/+1 +Vf/+1 f/ =0 (13a,b)
At AX
or
n+1 n
A " (Vf )/+1 — (Vf )/ -0
At AXx
t
n=2
n=1
n= o\ ~ >
) |\
i1 A Ax iy x
0
Figure 2.0

since Vis aconstant for the present.

When we gather terms we get the two equations



f/”+1(1 +VA_1)_[/A_’]‘I£71 :f/n
AX Ax

(14a,b)

fr(1ev Sy &g ypr
AX Ax

The reason we write just two equations for the three nodes or cells is that we need a boundary value at
cell i- 1, i.e., we need t o have somet hing flowing in (act ually we dont but propagating zero is not very
interesting).

Using the nth time level gets us away from having t o do a simult aneous mat rix solution. However, t his
met hod can be non-conserving. | ts use should be limited to emulation and not applied in saf ety analysis.
I f we write Equation (14a,b) at new time levels for the spatial derivative terms as,

f/"+1 1+VA—f —VA—if,-zH:f/n
AX Ax

(15a,b)

frfev 2D v B g
Ax Ax

we have to solve the system of equations as a matrix, and expend more ef f ort, since we have to solve a
matrix form of the equations as
/

(1 +I/£j 0
AX
= (16)

fin+1 f'n+|/§x_l‘f/f1+1
n+1
_VA_Z‘ 1+ I/A_l‘ f/’+1 f/f1
AX AX

Equation (16) isreferred to as an “implicit” scheme since the spatial derivative and time derivative
terms are connected at the same temporal level. Anot her interesting time level approximation
(discretization) is to use the derivative terms at the past time level as:

n+1 n n__gn
AT A
At AX
(17)
f/f1+1_f/f1 _|_|/f/f1_fi/7 =0

At Ax

or



£ :f/”(1 _ﬂl/)+£[/,§"1
Ax Ax

fr = [1-20y e 2yge
AX AX

Thisisreferred to as an “explicit” scheme since all the quantities of interest are explicitly known f rom
past time or the initial values. Let’s look at the stability of this set of equations, that is, dothey ever
give us a (NaN ), defined as “not a number” on a comput er, not somet hing you want to see in your
output. For the first time stepin (18) we can write

n=0
fr=ro(1- 20y 1 My
AX AX
(19)
n=1
12 =1(1-2y |+ Ly
AX AX

where f,”, is a constant boundary value and write it in the f ollowing equations as f,_,. We substitute

the value of 7, into £,% in (19) to obtain

2
f/2 :f/.o(‘l—ﬁ‘/) +(1_£V)£Vf._1 +§—t|/fl_1
X

/ /

AX AX AX
3 2
Fooro(1-BLy ) L1 ALy VAL (1AL ALy AL (20)
AX Ax Ax AXx Ax Ax
N N -1 N -2
Fvopo(1-Aly ) f[1-B8Ly | ALy L(q_ALy ) ALy Lo ALy
AX AX Ax AX Ax Ax

by induction. We use N as the superscript denoting the number of time steps and it approaches ©°
(infinity) for alarge number of time steps.

Aslongas AtV / Ax <1.0 in (1 —AtV/ Ax )N , this term will approach zero and we are left with
f/N[h :A—tVf,-_1 (21)
Ax

which is the correct answer for propagating f, , fromleft toright exactly. Conditions such as this are

/
referred to as “stability criteria’. If AfV/ Ax >1.0 intheterm (1—AIV/ AX)Nthe value will be

either “large positive” or “large negative” as N — oo and the out put will look like that of Figure 3.0
below f or separate time steps.



f,N
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Figure 3.0
We write (15a) as

f,””(wvﬁ):f,uvﬂf,ﬂ” (22)
Ax Ax

If we wereto set the datumof (22),theter mf,-ff1 ,to zero, the equation would become

f,."“(nvﬁ):f," (23)
AXx

with Vas aconstant inthe limit. For each time level we can write out the expression as

f/n+1(1+|/£]:f/n

AX

f,.1=f,.°/(1+vA—’j

AX

At At Y (24)
f2=r"'/ (1+V—):f,°/ (1+V—j

AX AX

N

£ :f,°/(1+v£]

AX

This f orm will be unconditionally stable for positive V', since as N becomes large, 1+ VAt / Ax is
always greater than zero. We do propagate 7, , but at earlier times we get some lesser value, so

inst ead of making mount ains out of molehills, we make molehills out of mountains, a phenomena called
“damping” or dif f usion.

Theterm C =V At / Ax is known as the Courant Number. As discussed, we need C < 1.0 for
stability in the explicit scheme. Setting C = 1.0 yields “exact” propagation from (19) and (20).

Toillustrate these ideas, we construct a Fortran program for the relations we have discussed. You can
simply copy and past e the listing in an appr opriate Fortran compiler. This text is in Comic Sans so you
might want to change the font if necessary.



Here isthe Fortran listing:

pr ogram hyper back

This is a simple programto read 2 numbers and print the sum

O 0O 0O O O

implicit none
real dt,dx,fimini,fi,fiplus1,CV,time
integer ndt,i

dt =time step

dx =cell width

C =courant number

fimin1=f at left boundary

fi =f at internal node
fiplus1=f at right node

V = advection velocity

ndt = number of time steps
time =running account of time

open some files &
ask for the number of time steps

O 0O O 0O 0O OO OO OO oo o

open(6,file= out.o’,status="old’)

print *, I nput the number of time steps’
read *, ndt

o

Get initial values and boundary value

print *,’ This program comput es t he propagation of f’
print *,’ I nput dt,dx,fimin1,fifiplus1,V’
read *, dt,dx,fimin1,fifiplus1,V

o

Comput e the Courant number

if (dx.1e.0.0) then
print *,’cannot compute courant number, dx is << 0.0’
goto 300
endif

C=V*(dt/dx)

¢ initializetimeto zero

time =0.0



¢ doloop for calculation
c
¢ header for output
c
print *,’ time C fimint  fi fiplus?’
print *,’”’
c
write(6,*) time,fimini,fi,fiplusi
doi =1,ndt
time =time +dt
fi=(fi +C*fimin1)/ (1+C)
fiplus1 = (fiplus1 + C*fi)/ (1+C)
print *, time,Cfimini,fi,fiplust
write(6,*) time,fimini,fi,fiplusi
end do
c
300 continue
stop

end

Here is what the output file on unit 6 looks like

0.00E+00 1.000000 0.000E+00  0.000E+00
1.000000 1.000000  0.5000000  0.2500000
2.000000 1.000000  0.7500000  0.5000000
3.000000 1.000000  0.8750000 0.6875000
4.000000 1.000000  0.9375000  0.8125000
5.000000 1.000000 0.9687500  0.8906250
6.000000 1.000000  0.9843750  0.9375000
7.000000 1.000000  0.9921875  0.9648438
8.000000 1.000000 0.9960938  0.9804688
9.000000 1.000000  0.9980469  0.9892578
10.00000 1.000000  0.9990234  0.9941406

for theinput typed in as the f ollowing when you run t he program:

! nput the number of time steps

10

This program comput es t he propagat ion of f
! nput dt,dx,fimint,fifiplusi,V

11,1001

Note that the output file, is registered as unit 6 and it’s status is designated as “old”. It must be there

or you will get anerror. To plot the values of each of the variables we will use an excel spreadsheet.
The steps are:

e Gotothe excel program, double click and open excel.

e GCotothefile header and click on open file.

e Gotothedirectory where the ouput fileis, click onit and open it.

e Make sure you select “Fixed Width”

e Hit finish and the values are lined up.

e Highlight all the values by using your left mouse button, drag across and down

10



e Gototheplot iconlabeled “Chart Wizard” and select scatter, use the last scatter option
e Select “Finish” to look at the plot

If wereturntoour set of equations for three nodes, we use theminthe f orm of

a(f v
r1 g fv fv (29)
U +( )/_( )/—1 -0
At Ax

We have finite dif f erenced the spatial terms as a product with the velocity. This f orm becomes more
usef ul for staggered grid f ormulations. Staggered grids are based on control volumes where the
energy and pressure are found within the control volume and the flows or velocities are f ound onthe
faces. For the three nodes of Figure 2.0, we can write the equations as

0 o T £
0 (1+G) 0 || |=|f"+G#h 26)
0 0 (+G)|f.] LEn+Gr

At
with C =V ——for the Courant Number. For N nodes we have,

AX
10 0 0 o Tt 1" T £, ]
0 (1+¢) 0 0 0o |7 £7+C_f.,
0 0 (1+G.) 0 0 fia| =| fL+Cf" 27)
0 0 0 (1+C)) 0 f, fr+C, 1,
0 0 0 0 (1+Gy) || fv | )+ Gy |

for the finite dif f erence matrix with mas an inter mediat e value between j+7 and N and f,_1 isa
boundary value.

The above equation can also be written as

DFf™' =E (28)

in symbolic matrix notation. Note that Eis a (5x7) column vector and 2 isa (5x5) matrix in our

not ation. The double underline denotes a matrix and boldf ace denot es a vector. The types of
operations that we performin this course will always be with square matrices, ot herwise t he rules will
not be applicable.

The inver se of 2 in (28) is

11



1 0 0 0 0
0 1/(1+Cl.) 0 0 0
D=0 0 1/(1+C,,) 0 0 (29)
0 0 0 1/(1+Cm) 0
_O 0 0 0 1/(1+CN )_
Symbollically, the solution of (28) can be written as
"' =D E (30)

We will implement (27) in a comput er program called hypersysD, the Ddenoting a diagonal matrix form.
The following is a listing of this program.
program hyper sysD

programto solve a diagonal set of matrix equations

O 0O 0O O O

implicit none

real dt,dx,C(100),time

real f(100),V(100),tiny,D(100),E(100)
integer ndt,i,BN(100),N,nout ,j

i is gthe time index

dt =time step

dx =cell width

C =courant number

f = convected quantity

V = advection velocity

ndt = number of time steps
time =running account of time
BN (node) =0, internal node
BN (node) = 1, boundary node
N =total number of nodes
tiny =atiny number

nout = node number for out put
D =the Ihs diagonal matrix

j isanextrainteger index

define tiny

O 0O O 0O O OO OO OO OO OO OoOaoaoao

tiny =1.0e-6

open some files

O 0O O 0

12



(o2 o]

O 0O 0O O O

o

O 0O O 0

open(5,file="inp.i’ ,status=old’)
open(6,file= out.o’,status="old’)

read the number of time steps
read(5,*) ndt
read number of nodes & output node number
read(5,*) N,nout
read dt,dx
read(5,*) dt,dx
read in the node number, BN flag and initial value of f & V

doi=1N
read(s,”) j,BN(j).f (j),V(j)

G(j)=V(j)* (dt/ (dx+tiny))
enddo

initialize time to zero
time =0.0

do loop for calculation
header for out put

print *,’ time = time

print *,’ "’

print *,’ node# C f’
print *,’”’

write(6,*) time,f (nout)
doi =1,ndt
time =time +dt

construct the D & Ematrix
do loop to build matrix

doj =1,N

if (BN(j).eq.0) then
D(j)=(1.0+C(j))
EG)=f(1)+C(-1)*f(-1)
else

D(j) =1.0

EG) =f()

13



Endif

c
c solve for f sothat we update it to newtime
c
f()=E()/D()
enddo
c
Cc print out the results
c
print *, time="time
print *,’
doj=1,N
print *, j,f(j),C(i)
enddo
c

write(6,11) time,f (1),f (2),f(3),f (4),f(5),f (6),f (7),f(8),
&f (9),f (10)
11 format (1x,f6.2,10(1x,f 6.2))

end do
c
300 continue
stop

end

The input file is also shown below. The problemis for 70 nodes with node one as t he boundary node,
using a value of 7=70.0.

1000
10,10
1,1
1,1,10,1
2,0,0,1
3,0,0,1
4,0,0,1
5,0,0,1
6,0,0,1
7,0,0,1
8,0,0,1
9,0,0,1
10,0,0,1

ndt
Nodes,node# f or printout
dt,dx

i,BNfV

It’s always a good ideato put the input order inthe input file as areminder. Part of the output listing

14



is also shown. The first entry istime and the next 10 entries are the values of f(j)as j goesfrom1to
10.

1.00 10.00 5.00 2.50 125 0.62 0.31 0.16 0.08 0.04 0.02
2.00 10.00 7.50 5.00 3.12 187 109 0.62 0.35 0.20 0.1
3.00 10.00 8.75 6.87 5.00 3.44 227 145 0.90 0.55 0.33
4.00 10.00 9.37 8.12 6.56 5.00 3.63 254 172 113 0.73
5.00 10.00 9.69 891 7.73 6.37 5.00 3.77 2.74 194 133
6.00 10.00 9.84 9.37 855 7.46 6.23 500 3.87 291 2.12
7.00 10.00 9.92 9.65 9.10 828 7.26 6.13 5.00 3.95 3.04
8.00 10.00 9.96 9.80 9.45 8.87 8.06 7.09 6.05 5.00 4.02
9.00 10.00 9.98 9.89 9.67 9.27 867 7.88 6.96 598 5.00
10.00 10.00 9.99 9.94 9.81 954 9.10 849 7.73 6.85 5.93
11.00 10.00 10.00 9.97 9.89 9.71 9.41 895 834 7.60 6.76
12.00 10.00 10.00 9.98 9.94 9.82 9.62 9.28 8.81 8.20 7.48
13.00 10.00 10.00 9.99 9.96 9.89 9.75 9.52 9.16 8.68 8.08
14.00 10.00 10.00 10.00 9.98 9.94 9.85 9.68 9.42 9.05 8.57
15.00 10.00 10.00 10.00 9.99 9.96 9.90 9.79 9.61 9.33 8.95
16.00 10.00 10.00 10.00 9.99 9.98 9.94 9.87 9.74 9.53 9.24
17.00 10.00 10.00 10.00 10.00 9.99 9.96 9.92 9.83 9.68 9.46
18.00 10.00 10.00 10.00 10.00 9.99 9.98 9.95 9.89 9.78 9.62
19.00 10.00 10.00 10.00 10.00 10.00 9.99 9.97 9.93 9.86 9.74
20.00 10.00 10.00 10.00 10.00 10.00 9.99 9.98 9.95 9.90 9.82
21.00 10.00 10.00 10.00 10.00 10.00 10.00 9.99 9.97 9.94 9.88
22.00 10.00 10.00 10.00 10.00 10.00 10.00 9.99 9.98 9.96 9.92
23.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 9.99 9.97 9.95
24.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 9.99 9.98 9.96
25.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 9.99 9.98
26.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 9.99 9.99
27.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 9.99
28.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 9.99

2.0 Control Volume Method

For the control volume method the basic ideais to use spatial regions or control volumes for the scalar
quantities such as pressure, density, energy, temperature, quality or void fraction, and links or
junctions on the faces of the control volumes for vector quantities such as velocity or mass f low.

This is accomplished by the use of a staggered grid” as shown in Figure 4.0. A section of pipe has f lows
going in and out. These flows are represented by links (or junctions) j-17, j, j+7. The pipe of length L
is broken into two volumes /- 7 and i, connected by alink j. The pipe segment could have easily been
broken int o more volumes and links. Volumes K and L are “boundary’ volumes. These are needed for the

convection of flowinto or out of the system, which has density associated with it. They can also be
thought of as reservoirs whose conditions can or cannot change with time.

P PE
—_—> —_—>
Flowl n Flow Out
K X -1 X i X L
Jj-1 J J*1
Figure 4.0
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I norder to accomplish the objective of discretization, the partial dif ferential equations in space must
be broken down int o dif f erential equations intime. This is accomplished by the use of the Gauss
Diver gence Theorem, given as

Jd/v/?d% =jﬁ07dA (31)
U A

for some variable f which relates a volume integral over the volume ¥~ to asurface integral and a
dif ferential area dA. For the vector field f =f (x) Equation (3-1) is given with n as the outward unit

normal to t he bounding surface A of the volume ¥~ in which the vector field is defined as shown in
Figure 5.0.

V-, Volume

Figure 5.0

The theorem can also be written as:
Wofd%=jﬁof‘d/| (32)
' A
where
V=_—"0y+ i] +—k

ox oy 0z
and (33)

F=Ffi +f]+fk

with 7, 7,/( as unit vectors along the x,y and z axis.

Using (33) the advection relation of (7)

of ofVv
—+——=85(x,t
3f+8X (x.1)

can be written as

%+%oﬁ:s<x,1). (34)
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using the velocity as a vector. For a control volume N, as shown in Figure 6.0, surrounded by & links
(junctions), we integrate Equation (34) over d¥ (or ¥ the volume) to obtain

AN

— » Vi,m

—>
‘72,?12/
Figure 6.0
of - .=
J(—+Vofvja”v‘: JS(X,I‘)O’% (35)
AL v

For the moment, the assumption is made that the scalar quantities in the control volume are well mixed
at some aver age value. Using t he Gauss Divergence Theorem and the assumption of perfect mixing, the
following relation is obt ained:

d(f + )
%+Aj(ﬁoﬂ/)dA:SNh‘v (36)

for volume M.

Recall that the 7 surface vectors are outward unit normal vectors. For k links connecting to a volume,
the klinks connecting to the surface A of the volume, there will be 71, associated unit normal vectors,

with the incoming links denot ed as inor terminal links, #, (going into node N) or out incident links, i
(leaving node N) as out going links.

The Riemann surface integral in Equations (36) can be represented as a sum of the link surface areas
as:

j(ﬁof V)ds = ;(f V)k o kA, (37)

S
using Ax as the link surface area.

Note that for the terminal links, the unit vector associated with the incoming velocity is opposite to
the outward normal of the control volume N surface, while for the incident or outgoing flows, t he unit
vector associated with the velocity is in the same direction as the outward normal of the surface.

17



Figure 7.0

Thus, there will be two sums for the surface integral representation, one sum over the terminal links
and one sum for the incident links. The terminal links will have a negative sign due to the dot product of
the outward unit normal and t he unit normal of the incoming velocity being negative. Relation (37)
becomes

arf
o2 -Ya,, (VA) + Y4, (VA), =S,%
t /

T x(9

I/

for the graphical depiction above. A more compact notation can be used but can result in more
conf usion. &, , is anindexing symbol for the inlet links () of the assumed flow direction starting at

the (from) volume, the upstream volume, to the terminal volume N ; thea, ; representsthe outlet link’s

fromvolume Ntoitsinlet (fo) volume.

I n general,
k =1k it,ieof k} (39)

The total number of links isthe set that has alink as outlet and inlet to dif f erent nodes. As noted
earlier the pV A termis usually written as w; and denoted as t he mass f low

w, =(pVA), (40)

18



for alink k.

An additional discussion on the nature of the g, , is givenin Appendix | .

For the mass and energy equations (1) and (3), comparison to the template equation of (35) gives

dM
y Y=Y ayw =Y ayw, (41
A 1 i
and
d (M h Co i
% = ZaN,t (Wh)t _ZaN,i (Wh)i +7%\’PN VRO (42)

which clearly shows the sum of the inlet flows is positive and the outlet flows are negative.

The basic idea behind numerical modeling f or Thermal Hydraulics (T/H) codes is the use of a
staggered grid, where the scalar quantities, such as pressure and energy, are solved for in control
volumes and the vector quantities which have direction, mass f lows or velocities, are obtained at the
links. The mass f lows or velocities are staggered across the control volumes.

I norder to do this, some assumptions and prescriptions have to be made and f ollowed t hr oughout the
development for the momentum equation. As shown in Figure 8.0, alink or junction j spans one-half of
each adjoining control volume i-1and i.

NN
ii— 7 X i i
| j |
<+ | > <+ | >
Li—l Lz
Figure 8.0

Thus, the local length that each link spans is
1 1
==L  +—L (43)
Li=gba+5k

or one-half of the upstream control volume and one-half of the downstream control volume.

To discretize the momentum equation, integrate it from 0to 4 for alink, recalling t hat

w, = (pVA),or

19



L.

Ay LIZNY L
o 91t Ay odx
—gCCJ—dx—gjpdz—j ‘W‘ (x )dx
wit h
L L "z, z, (44)
g pSinbdx = g[pdz =g| | p,1dz + | p,az
0 0 Z;_ Z,

Z; Z,
| piadz+ [ pdz|=g|p(2,-2,)-p1(24-2,)]
Z;i_4

Zj
as in Figure 9.0.
The assumptions are as f ollows:

e w the mass flow, is unif orm over the link lengt h.

e Thepressuresat 0, L; are the upstream and downstream pressures for the link (junction).

e The computed pressure is defined at the center of the volume.

e Density is uniformat the link (junction).

e Theheadtermisintegrated fromthe center of node i- 7tothe link elevation and from the link
elevationto the center of node i.

Also, note that an absolut e value sign has been placed on one of the mass flowterms inthe frictional

pressure drop portion of the momentum equation. This isto properly account for flow reversals. The
sifting property of the deltadistribution, of

Tf (x)8(x)dx =7 (0) (45)

isused inthe integration.

Using the assumpt ions above, Equation (3-14) becomes:

gdw

A a S W)li=-g.c[P(L)-PO)]

/

_g[p/. (Z, -Z; )—p,-_1 (Z/‘—1 -Z; )}_[/Z(LV—JZQJ
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Theterms are:

i =/, = Link or junction I nertia, 1/ft

A

/

P(L)=P=R =P

/ Downstream J

P(O) = '/0'—1 = '?/psz‘ream = EU

(47)

for link j. Equation (46) becomes, upon neglecting t he momentum f lux terms,

/de
I dt

-aclr -#]-oz, - 24!

!

dxSin@=7—-72,_, =dZ

v

Figure 9.0

The various elevations are Z.. ;for the centerline elevation of node i~ 7, Z;for the centerline elevation
of node j, and Z; for the elevation of link j. The second termonthe right hand side of (50) is
abbreviated notation for the head dif f erence terms of equation (46).

By observing Figure 9, the elevationtermin the integration was used as:

A7, = p(2-2,)-pu(2.-2,)]

(51)

where Z;. ; and Z;are the centerline elevations of the upstream and downstream volumes of link j. The
elevationtermin (41) represents the nodal elevation and density dif f erence terms of (46). Using the
nodal densities is necessary in order to prevent work being done with flow reversals f or the head
terms. The integration of the head termis done fromthe elevation of the centerline of node /- 7to
the link elevation, and fromthe link elevation to the centerline of node i.

If welet dw/ dt ~ (W”+1 -w" )/ At in (50) and gat her terms we can write

21



B>
Q
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1
\E
\E
| E— |
+
§
|
Q
k>
>
N

w; Kme , (50a)
/
/, +At > %32/4/?
which can be shortened symbolically to
=y [ -7 o

wit h obvious definitions f or )7” , the past time “admittance” and D/ , the explicit flow and head term.

I norder to model valve aperture positions, AZinthe form loss term was written as
= AR (52)
where

sSF:}S1 (53)

with & a small number, 7.0 x70°%, in order to avoid division by zero.

Also, note that since the pressure is usually expressed in /bf/irf, a constant is necessary to convert to
Ibf/ ft2. This constant is

C =144 in®/ ft? (54)

Using t he above, the moment um equat ion becomes:

aw, Kw|w|
v L ]‘gAzf‘[ml °9

The discrete control volume/link conservation and closure relations can now be written as the f ollowing:

Mass

de Z afmtoW + Z afmto =0

or

(56a,b)
de ZaNIW +Za/v, =0
Momentum (Transient)
aw, Kw|w|
! =—QCC[’7]—’/"D}—9AZ/—[WJI 57)
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Energy

d(Mh) - Yy (wh), + Yay, (wh) - Sy %o,
or
(58a,b)
v T3, o), + Law, ), =S % v,
The control volume ¥} is fixed in space and the mass is the product of density and volume.
Equations of State
The most popular is
ps = ps (Ph) (59)
Others include
=R(p.n).R=R(p.T).ps = ps(PT) (60)

with the subscript s denoting a state function.

These are generally for the t wo-phase flow homogeneous case. Various subsets can be used f or two-
phase and single-phase conditions. For single and t wo-phase conditions the state equation

R = E(p,h)or R=R (p,T) is very sensitive to changes in density while (59) is not very sensitive

to changes in pressure. This is why Equation (59) isthe preferred state equation for use in (T/H)
codes.

To place the energy equation in its pre-programming f orm, we need to t ake care of the terminal and
incident enthalpy link sums in (58b) as:

(wh ), =20+ 5,) (1—@)]{2”:3%

(61a,b)

with B, = |Wk|/ (W +¢€). € is asmall number to prevent adivide by zero when w, =0 .This

prescription “donors” the upstream/ downstream enthalpy to link k, aterminal or incident link. More on
this subject is discussed in Appendix | .

For the terminal links to node N the upstream nodes are represented by v and for the incident links
23



from node N the downstream nodes are represented as d. Using (61a,b) in (58) the time dif f erenced
relationis

(o), L+ (h), 2 - Y 3, <(BTH ) + Ly, «(7h )

N at
C dP (62)
= ¥Q +¥——
J dt ),
wher e we have taken the derivative of the first termin (58). Recall t hat
apy
%—:ZaNtOWf_ZaN/OW/ (56)
a T T
and upon using this in (62) we get
n+ aN,fM/f
N {(pi;‘)N+Ai ZaN,t oW, _Za/v,/OW/ —AIZ 5 (1-8)
t i t
a, w;
+At Y N’2’ L(1+ B)} = At ¥ Q, +’|7,‘\,J£(P”+1 -P"),
" (63)
a, w,
H(pvh), <ot L (1= B
t
ay w;
~At L (1+ B)h°
L1+ )
Equation (63) is compactly written as
o =1, +¥4 g(/—"'7+1 -P") (64)
NN - YN NJ N

wit h obvious def initions for the terms.
Mass Error

For this discussion we will drop the volume N subscript notation.

The definition of mass error is the dif f erence between the mixture and state density multiplied by the
volume or

e=¥(py - ps (P.h)) (65)

with the mixture density defined Equation (56) and the state density by (59). Equation (65) can be
expanded in a Taylor’s series as

el =¢" +a—€ApM +£Apx (66)

ap M ap K
24



Taking derivatives in (66) by using (65) we get

g™ =¢€" +¥Ap,, - VAp,
ap ap (67a,b)
M _ e L YA — s AP s AR
£ £ LPu 9P oh

The mixture and stat e densities will never be exactly equal due to round-of f, precision and the

accuracy of the property fits or tables for the state density as a f unction of pressure and ent halpy.

From Equation (56) the mixture density is determined as

¥Ap = At (Z ay W — ZaN,/M// J (68)
t i
and using (68) in (67)

n+ n a S a S
£ = & 1 At (;aN,,W, _ZaN”W’ J—%%Ap—’v‘%Ah (69)

is obtained.

The term """ is aresidual at the new time st ep. I norder to overcome mass error we f orce this
residual to zero locally by setting €' to zeroto get

a ap, n
b‘aLpsAp+{7‘£Ah:AI (;aN,,W, ~Lawm ]+€ (70)

I f we recall the definition of mass error as € = b‘(pM - ps) we get

G 9 5
%aLpsAm%%Ah:Ai (;aN,,m —/ZaN,/m]+’v‘(pM—ps) 71
with
AP=P"" - P

(72)
Ah — hn+1 _hn

We restore the N subscript notation, to obtain

ap +1 ( ap] n+1
V-—= | B +|¥—=| A" —At ay,w, =) ayw |=
[ap]NN Lo ot Laym - Y,

7 aps aps n
W w5 | A

(73)
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and using the relations

W =Y [ - F)+D

(74)
W =Y [P -]+ D
JvLaps Evﬂ+1+ %a& hA//7+1_
ap ), oh )y
At [z (ww—mm)—zaN,,(ww—eﬂ]m)]: 5
t i
n op 2P
¥ (i - L A e
5 (Pu ps)N+[ 90 ]N N +( Y jN N
Finally, using
0y +¥ S (P -P),
W= J (76)
Oy
in (75) the relation
C
%R
v s | pret g (498 J -
ap ), oh )y Oy
[ Zaw, (7 [7 ~7])-Law (7 [P -7]) | .
t i
C
¥R
ap op T NN
L - == | R+|¥==| |-+
5 (ow = Ps), [ ap]N i ( h ]N W
+AtY ay,0-At)Y a0
t i
is obt ained.
Once the pressure equation is solved we can get the flows from
wi =Y | - £ ]+D (78)

and using the updat ed f lows we can solve for the nodal enthalpies from (62) and (76). Finally, the
mixture density can be solved from (68).

26



The equations and state relation used for the three-equation model are:

Pressure
Y TR
v 2P | iy (40P J -
ap ), oh )y Oy

[ Zaw (0 [P -7 YL, (7 [7 -7 |-

(79)
C
Aty a,,0-AtY a, D
t i

Ent halpy
oWl = T ¥ Jg(/y+1 ), (80)
Moment um
wi =y [B - £ ]+D N
Mixture Density

dp/v Za/v[ W, =) ay; oW, -

State Equation

ps = ps (P.h) (83)



5.0 Compressible Two- Phase Flow

The final mechanics of atwo-phase flow program are the constitutive relations and derivatives. To

present these relations we need some definitions first.

The static or mass quality is

X == (84)
m

where /l//gisthe gas mass and Mis the total mass of the system,
M=M,+M, (85)

with M, as the liquid mass. Since M ,= M — M, we can divide this by Mto get the relation

M/
1-X =—=- (86)
M

Equation (85) can also be written as

pY-=p Y5+ p Y (87)

since mass is the product of density and volume. Dividing t hrough by t he volume gives

p=ap,+(1-a)p, (88)
since ¥~ =¥, + /. The definition for the gas void fraction is
4‘7L
o=-9 (89)
17L
and
4‘7L
 =0-a)=1; (90)

for the liquid void fraction.
Fromthe definition of static quality we can write

M _p _en,
M p¥ ol

which gives us arelationship bet ween quality and void fraction. From the relation
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Vi (92)
we get

V=vM=v, (PM,+v,(P)M,

or (93)
v:vg(P)%w, (P)%=ng(/’)+(1—x)v/ (P)

for water and steam at t wo-phase sat uration conditions. Vv isthe specific volume, the inverse of the
density. The v, v,, p,and p, are functions of pressure at saturation. From (84) the maximum

amount of gas is when 0< M, <M sothat the quality ranges from

0<X <1 (94)
and the void fraction range is

O0<ac<i (95)
For the extensive enthalpy (units of Btu) we can write

H=H,+H,

Mh = M,h, + M#h

Mh = M, + (M- M,)h
h=Xh,(p)+(1-X)h (p)

(96a,b,c,d)

fromthe definition of the static quality. Ais the mixture enthalpy, hg (p) isthe saturation gas

enthalpy and £ (,0) is the saturation liquid ent halpy, all intensive quantities. From (96)

_ _h-h(p)
) hg (p)—h, (,D)

which is referred to as the “equilibrium” quality.
State Derivatives

The two derivatives used in (79) are:

o.(PH) . 9p.(Ph)

98
2P Y (98)

where it isinferred that taking the derivative with respect to (wrt) Pthat the enthalpy A, is held
constant and vice ver sa.



It is a common practice to evaluat e these derivatives in terms of specific volumes, since most of the
fits and table data are in this form.

PR
s (BA)_ v, _ 10y,
0P 9P V2P

(99)
PR

s (Ph) v, __1av,

oh oh V2 oh
The derivatives and densities have to be defined for three regions:
X,<0.0 for subcooled liquid
00<X, <10 for staurationmixture (100)
X, 210 for superheated steam

For the first and third regions the derivatives of (99) are applicable. Polynomial curve fits and tables
can be used for the properties. For the two-phase region the constitutive properties and derivatives
are mor e complicat ed.

Two- Phase Derivatives

For the two-phase region:
v=Xyy(P)+(1-X,)v, (P) (101)

Recall that the two independent variables are A and P. The derivative of specific volume (wrt) h is given
as:

3—; _ aih[xevg (P)+ (1= X, )V, (P)]

but
__h-h(p)
* " h,(p)-4 (p) (102
sot hat
ov _ol(_h=n) | p.lq =) 1]
on "o (hg(p)—h,(p)] o (‘ [hg(p)—h,(m]] )

a_V_Vg(P)_V/ (P)_V/g
oh ~ h,(p)~h(p)  h,
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For the phasic pressure derivative

dv(Ph(P)) _ov LoV ohn
dP 0P ohoP
or (103)

dv _dv(Ph) 9van

oP  dP oh oP

We know t hat

dV_d[

ﬁ_d_P Xevg (P)+(1_Xe)vl (P):I (104)

for the “explicit” function of pressure or

dv deg(P)
daP ° dP

+(1 —Xe)d‘;—'(op) (105)

Recall that dv/0h is already known from (102) and we need to compute dh/ dP. Thus,

dh d

=5 X, (0)+ (1-X) (p)]

o (106)
dh Xe dhg (,0) ( -X )dh (’D)

aP aP

Recall that the pressure derivative is

ov_dv(P.h) avoh

s = T = (107)
oP daP oh oP
or

av, (P 1% ah ah
B_V:Xe Vg( )+(1—Xe)dvl (P)_ rg Xe g(p) ( X) (,0) (108)
oP aP aP /7,g aP
The final form of thisrelationis

av_(P ah h
a—sze Vo )_V/g , (P) +(1-X,) dV/(P)_V/gd/(p) (109)
oP aP /7,g arP aP /;g aP

When computing these properties the past time values of dependent and independent variables are
used unless an iterative procedure is applied.



6.0 Pressure Matrix & Boundary Conditions

Equation (79) showed how we eliminat ed t he energy and moment um equations in f avor of the pressure.
This section shows how explicit flow inflow or outflow can be implemented. We will gather all the terms
inthe pressure equation of (79) and form a pressure matrix for the solution. After the pressures are
obt ained we will use themto geth flows and t hen comput e the ener gy propagation.

We need to see how all the terms will be programmed in the pressure matrix solution of d p=band

take the approach of examining t he indices of the links and volumes in Equation (79). The row index is
Ninthe matrix for the Nthpressure node. The f and i indices denot e the link numbers or types, the ¢
link is the link terminal to node N from node vand i is the link leaving node N to node d. This situation
is depicted inthe figure below. For the situation shown of one terminal link and one incident link, we
write (79) as

C
i
%aps +%aps{ J PN7+1_
op oh| o
N
At (aN,t ()t/nli’?U_EN])_aN,/()//'n[EN_ED])): (79)
C
iy o
p ap n Ty Ny
¥ (py - Vs g\ | -y
N(pM ps)N+[ apJNN"‘( a/‘l],v v 6N+ s,

+At a, 0 - At a, .0

At this point it might be wise to prepare the computer code f or using f low boundary conditions. We do
this by examining the pressure solution without the energy terms (f or convienence) as:

VOB (B R)- (- () 0 (1~ HD)a -
N

i ' (110)
Y (Pw —ps ), +ALH (t )@y, w — AtH (i) &y,w,

with H (¢ )and H (/' )as unit functions associated with the two types of links, terminal and incident.
The H (f )and H (/') functions are given by the general relation

H (k) =1, iff link k is a boundary link, i.e., a flow boundary condition

(111)
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H (k) =0, iff link k is not a boundary link, i.e., a regular pressure dif f erence link

I'f the links are regular links (no f low boundary condition) connecting the two volumes, the H (k)are

zero, and we get (79). If link ¢, the terminal link is a flow boundary condition then (110) becomes

ap

{%a&] (R =R )+ Atay w, =¥ (py — ps ), +Alay,w,
N

This is an inf low boundary condition from volume vto N at the terminal link.

The mass flows at links £ and 7 can be written, wit hout the head terms, as

w=Y[B —B"|=Y [l -] If
L
=
w=Y[RY =R =yt 1]

and upon using these relations in (112) we get

op
AtY (1-H t))ay, [P -P" ]+
Ai¥(1 -H (/))aN,/‘ [F/,N _EdJ =

[%%J (PNn+1 _ PNn)_
N

(112)

(113)

(114)

Y (pM — Ps ):, +AtH (t)ay ,w, — AtH (i)ay W,

which can be rewritten as

Va& (,CA7/7+1 _,%7)_

ap |,
Pf,u_
A”{(‘l—/‘/(l‘))aNJD 1 0] pin |,
0
[0
AtY(1-H(i))a,,[0 1 1] P |=
P/,d

(115)

% (p/v/ — Ps ),,z/ +AtH (f )aN,z‘VVt —AtH (/)aN,/VV/
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I nequation (115) the ¢ and 7 indices in the second and third terms on the left are dummy indices t hat
can be contracted, not summed. For the Nthrow of the grid show below the a matrix coefficients in

a P =Db areindexed as

(o)

V2| (7'-R)

At ){(1 -H(t ))[aN,u —ayn O]

o Zh V)
_|_

(116)

0
AtY(1-H()) 0 ayy -avs | R |=

Q0

Y (o — s )l,z, +AtH (t)ay w, —AtH (/) &, W,

The &, , and &, ; have been changed to more correctly indicate the positions in the pressure matrix.
Also, the t and i subscripts correspond to v (upstream) and d (downstream) links or junctions.

We can see that for two links connecting to node N we get two diagonal contributionsto dyyinthe

pressure matrix of 1.0, one for a/\/,t(to rooe) of 1.0 fromthe terminal link, one for a]\/,i(ﬁanmie) of
1.0 from the incident link, one of f -diagonal contribution fromthe terminal link at &g, , and &, ,from

theincident link of 1.0.1f we connected anot her terminal or incident link to node N we would see the
same pattern of Z Y, to the diagonal members of the matrix and —¥ and — ¥ to the of f -diagonal

J
members. This method is known as assembly by nodes or rows. It is called that because we look at a
single node, not a link, and assemble t he adjoining link nodal contributions to the matrix. We also have
the topology to add in a boundary flow link. Of course, the number of links connecting to a node would
be read in as Fortran input, as is shown in Appendix || .

The following Fortran code shows how t he assembly processes would occur for input processing and in
the pressure matrix assembly.

¢ -- input processing
c
¢ -- get the number of links per node and t heir values
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o

-- first initialize arrays

doi =1,nvols
c itlisthe # of terminal links to node i
itl(i) =0
c iilisthe # of incident links from node i
iil(i) =0
¢ maxnjndsisthe max # of links surrounding a node, set at 6
doj =1,maxnjnds
Cc jt,arrayof nodei, for 6 terminal links to node i
¢ ji,array of nodei, for 6 incident links from node i
jt(i,j)=0
ji(i,j)=0

enddo
enddo
c
doi =1, nvols
doj =1, links
c
c
¢ tooonode=N,thenj=t, aterminal link
¢
¢
if (tooo(j).eq.i) then
itl(i)=it1(i)+1
Jr(itl(i)=]
endif
¢
¢
¢ fromnode =N, thenj=i, anincident link
¢
c

if (from(j).eq.i) then
iil(i)=iil(i)+1
Ji(iiil(i)5

endif

enddo

enddo

The matrix assembly process f ollowing (116) would t ake place in two st eps:

1. The coefficients of the new time pressure would be assembled into the matrix pressure
solution, a p=>b ontheleft hand side diagonal terms and the coef ficients of the past time

pressure term would be placed on the right hand side, using the following fortran.

c
¢ —diagonal & rhs assembly
c
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doi =1,nvols

if (ipf (i).eq.0) then
amat (i,i) = vol(i)*drodp(i)
brhs(i) = vol(i)*drodp(i)* pvol(i)

else

c
amat (i,i) =1.0
brhs(i) = pvol(i)
endif
enddo

c

The if statement setsthe diagonal termto 1.0 and sets the right hand side termto the pressure if
node 7 is a boundary node.

2. The row by row assembly process f ollowing t he mnemonic of equation (116) is given by the
following fortran.

doi =1,nvols
if (ipf (i).eq.1) goto 13
¢ sumover terminal links to node i
do k=1,it (i)
c givesthelink #
j =jt(,itl())
¢ chktoseeif node# isi
nt =to00(j)
nu =from(j)
¢ diagonal & of f -diagonal term
if (nt.eq.i) then
amat (i,i) = amat (i,i) +dt*c144*ylink(j)* (1.0-ibw(j))
amat (i,nu)=amat (i,nu) -dt *c144*ylink(j)* (1.0-ibw(j))
brhs(i)=brhs(i)+dt *ibw(j)* wlink(j)
endif
enddo
¢ sumover the incident links to node i
do k=1,iil(i)
c givesthelink #
j =Ji(iiili))
¢ chktoseeif node# isi
ni =fromj)
nd =t000(j)
¢ diagonal & of f -diagonal term
if (ni.eq.i) then
amat (i,i) = amat (i,i) +dt*c144*ylink(j)* (1.0-ibw(j))
amat (i,nd)=amat (i,nd) -dt *c144*ylink(j)* (1.0-ibw(j))
brhs(i)=brhs(i)-dt *ibw(j )*wlink(j)
endif
enddo
13 continue



enddo

Prior to performing the link assembly on a row by row basis we perform a number of operations for the
link quantities. The fortranfor the entire code is shown in Appendix I 1.

As shown previously, there are four contributions from two links that connect to anode. These are the

two diagonal contributionsto @y , one for Cév,t(mm) fromthe terminal link, one for

a]\f,i(ﬁmngde)fromthe incident link, one of f -diagonal contribution fromthe terminal link at a,, and
a,,fromtheincident link. An easier method is just to sum over all the links and add their

contributions to the matrix rows and columns. This f orm of matrix assembly is known as assembly by
links. The following Fortran shows how t his can be accomplished.

c
c -- add inlink contributions
c
do 20 i =1,links
c
¢ nd=terminal link node
¢ nu=incident link node
c
nd =t o000(i)
nu = f rom(i)
c
Cc -- add link terms to pressure equation
c
amat (nd,nu) = amat (nd,nu) - dt * (1-ibw(i))
&*c144* ylink(i)
amat (nu,nd) = amat (nu,nd) - dt * (1-ibw(i))
&*c144* ylink(i)
amat (nd,nd) = amat (nd,nd) +dt* (1-ibw(i))
&*c144* ylink(i)
amat (nu,nu) = amat (nu,nu) +dt* (1-ibw(i))
&*c144* ylink(i)
c
c-- add inlink rhs flow b.c. terms
c

brhs(nd) = brhs(nd) +ibw(i)* dt *wlink(i)
brhs(nu) = brhs(nu) - ibw(i)* dt *wlink(i)

This code is listed in Appendix I 1.

I norder to keep the solution of the pressure matrix elementary a square matrix solver will be used
initially. A number of dif ferent methods will be explored for instituting boundary conditions during the
course. A boundary node can be initialized in the program by the use of an array, such as

I PF(1) =1, if node / is aboundary node
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1PF(I) =0, if not

The simplest way t o approach this is the method of Payne & I rons by writing the matrix relation as

ay o Ay A B,
s : P, |=| B, (117)
Ayyy  * Ayyoyv PNV BNV
and to replace the diagonal terms corresponding to a boundary condition by

B(l)=BIG x Al) x A(l,1) (118)

A(l,l) = BIGx A(l,1),1PF()) (119)

where Bl Gis a large number, B/ G=1. e+20 and I PF(l ) corresponds to a boundary node number. This can

be programmed as

doi=1,NV

if (I PF(1).eq.1) then
b(i)=BI G*p(i)*a(i,i)
a(i,i)=Bl G*a(i,i)
else

continue

endif

enddo

It isimportant to note that we do b(i)=BI G*p(i)*a(i, i) bef ore a(i, i)=BI G*a(i, i), ot her wise we will get a

code error.

A squar e Gauss Elimination routine can be used from Brebbia®. As we perform the Gauss Elimination the
effect of the boundary condition implementation is to divide by a very large number to set intervening

terms to zero except for the boundary row. Other met hods can be used such as A(/,/)=1.0for

boundary row / and A(/,J)=A(J,1)=0 with B(l )=R1). Other forms of matrix storage can be used such

as bandwidt h storage.
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7.0 Comparison to Experiment

I norder to verify the code two independent assessment problems were performed. The first is
Edwar ds Blowdown and the second is the General Electric Level Swell experiment.

Edwards Blowdown (Description & Figure from the TRAC V&V Manual)

Edwards horizont al-pipe blowdown experiment studied depressurization phenomena of initially non-
flowing subcooled wat er. The experiment al appar at us consisted of a 4.096-m-long straight steel pipe
with a0.073-mi.d. The appar at us was designed f or a maximum 17.24-MPa (2000 psia) pressure at
temperaturesto 616.5 K (460 F). The discharge end of the horizontal pipe was sealed with a0.0127-m-
thick glass disk.

The pipe was filled with demineralized water. A hydraulic pump and a control valve

regulat ed the system pressure. The pipe was evacuat ed by a vacuum pump bef ore it was filled with
wat er. Bef ore the glass disk was ruptured, the pipe was isolated from the supply tank to prevent the
discharge of cold water into the pipe during blowdown.

le 4086 m 2
i G857 G386 GS-5 GS-4 GS-3 (GS-2GS-1
1 FEE— M PP — DG %BlA
0073m | PIPE | BREAK END
T.
CONTROL
VALVE Dimension I VACUUM VALVE
A 0.168
B 0.158
HYDRAULIC [b C 0 B
E 0.555
F 0.555
WATER G 0.835
SUPPLY H 0.079
TAME

Figure 10.0 Edwards Blowdown Apparatus

Seven volumes and six junctions (links) are used f or the model. Figures 11 and 12 show the pressure and
mass flow at the break as a function of time.
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GE Level Swell Experiment (Aumiller Reference 6)

The GE Level Swell experiments wer e designed to measure transient void fraction profilesin alarge
tank, depressurized via a blowdown line and orifice. Two dif f erent vessels sizes (1and 4 ft) nominal
diameter) were used in the experimental program. This paper will f ocus on test number 1004-3
performed with the smaller of the two vessels, the one-f oot diameter vessel.

A schematic of the experimental facility for the small vessel blowdown tests is shown in Figure 13.0.
The experiment al vessel was constructed from alength of 12 inch, schedule 80 pipe. The volume of the
vessel is 0.28 m3 (10.0 ft3). Inan attempt to prevent liquid from being entrained out of the test, the
blowdown pipe was connect ed near the top of the vessel. The depressurization rate was controlled via
an orifice in the blowdown line. For the test being considered, the diameter of the blowdown orifice
was 0.00952 m (0.375 in). A perforated plate could be inserted inthe vessel to examine the ef f ect of
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a hydraulic resistance on t he experiments; however, this plate was not installed for test nhumber 1004-
3. The instrument ation of the test included one absolute and six dif f erential pressure gauges and
several temperatures detectors. As shown in Figure 13.0, t he regions bet ween adjacent pressure taps
arereferred to as Levels (or segments) and are numbered sequentially starting at the bottom. The

dif ferential pressure measurements were used to infer the void fraction in each segment by assuming
that hydrostatic head was the only component contributingto the pressure dif f erence.

The height of the two-phase level was det er mined using a t wo-st ep process. First, the segment
cont aining t he t wo-phase level was heuristically det ermined using the axial void profile in the vessel.
Next the position of the two-phase level inthat segment was calculat ed assuming t he void fraction
below the two-phase level was equal to the void fractionin the segment directly beneath it.

The initial conditions for test number 1004-3 were a system pressure of 6.92 MPa (1011 psia)
and awater level of 3.167 m (10.4 ft). Since the experimental fluid t emper at ur es wer e not included in
the test report, the initial liquid temper at ure was assumed to correspond to the saturation
temperature, 559 K (546 °F).

Level 6 fap Blowdown
Cirifice

Level 5

et e
Soturated

Lagquud

Wessel restriction

._
%
®
A

A

\3/

Level 3

Z Blowdown Valwe

o
I/

(Y
3/

Level 1

|1— 1 S'Z—A Suppression Pool

Pressure vessel

0066 ¢

Figure 13.0 GE Level Swell
As inthe previous simulation seven nodes and six junctions (links) were used for the model. Figure 14.0

shows the pressure at the top of the vessel for two form losses at the break of 1.0 and 10.0
respectively. Obviously, the larger formloss results in a slower depressurization.
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8.0 Summary

A Thermal Hydraulics (T/H) Primer has been written for the control volume method. The Primer
illustrates the code through theory and programming. The Fortran program and input files can be
downloaded fromthe web at:

htt p:// www.micr of usionlab.com

The author and Microf usionlab t ake no responsibility f or the use of the code or any mistakes inthis
manual or the code. It is meant as an educational exercise not a saf ety analysis. The Fortran version
uses a less accur at e version of the steamtables. The Fortran code version is not meant for commer cial
or saf ety analysis applications. Micr of usionlab maint ains a copyright on the use of this code except for
educational purposes.

A graphics version of the code writtenin Cis available for simulation. Contact Microf usionlab at the
above web site for a demo of the commercial version.
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Appendix |

Equation (38), the discrete version of the advection equation, is used for illustrating the matrix
assembly and t he donoring.

af,,

v ar = ZaN,t (f VA); _Za/v,/ (f VA)/ +S, ¥y (38)
t i

This equation can be compacted into the relation

ar
%d—;/=—;a/v,k (fVA), +S, %, (A1-1)

where k denotes an inlet or outlet link and:

ay , =—Liff k=t
ay=1Liff k=i
a, . =0,iff knot linked tonode N

(Al -2)

The &, ,is-1.0 for flowinto volume N, link kis aterminal link £ and ay « is 1.0 for flowout of N, link k
is an incident link 7. The &, , as defined in Al-1and Al -2 are the dot product (cosine) of the flow or

velocity vector with the out ward unit normal vector.

ﬁ/n/et | | ﬁout/et
— —> —
(f VA )1 —> N (f VA )3
f V’A) — >

For the figure above we can see that the cosine of the angle between the flux vectors of (f VA )1 and
(f VA )2 and the area unit normal /jmer on the inlet face is —1.0 or ay . =ay, =—1.0 . Conversely, the
cosine of the angle between (f VA )3 and Mouser is 1.0 or ay ; = 1.0 . Using this inf ormation in Al -1 we

get

df,,
Nodt

=-a, (fVA) -ay,(fVA), —a,,(fVA), + S, ¥ (Al -2a)
and upon using the values for the ay , We get
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df
Vo TN
Nodt

(fVA) +(fVA), - (fVA), + S, ¥ (Al -20)

Since we already know that there are only two types of links, terminal links to node NV for which we
canuse &, , with a poisitve signin (38) and incident links with &, ; using a negative signin (38), the

programming is easier and more lucid. | f we were doing more complex geometries then Al -1 would be
mor e general. Thus, in our notationthea, , are used simply as a matrix location device.

For the flow directions fixed as in Figure Al .1, the Equation (38) becomes

af
1d_l;1 = a1,3 (f VA)3 _a1,1 (f VA)1 +%1

df,

%W =&, (f VA )1 — &, (f VA )2 +1S, (Al -3)
ar

Y25 =a,(FVA), - a, (FVA), + VS,

or rearranged as:
df,

%? + a1,1 (f VA )1 + a1,2 (O)_ a1,3 (f VA )3 = {71L81
af

¥ dl‘2 —8,,(fVA), +&,(fVA), +a,(0) = %S, (Al -4)
ar.

%d_; T & (O)_ &5 (f VA )2 T8, (f VA )3 = %Ss

The trems associated with &, , are link (junction) terms, not to be conf used with the volume 1, 2 and 3
indices. The &, , indicate the position inthe matrix of the flow terms. The matrix representation can

be written as:

v 0 offdf/at) [a 0 g (VA) | [(s),
0 0 ¥|drrat] [0 -a, a,|(va)| ()
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, .
T

Figure Al. 1

As stated previously the (f VA )k terms are link (junction) quantities. Recall that f in (f VA )k is not

known at the junctions, it is a volume, cell or nodal quantity. Thus, we must “donor” f fromthe volumes
tothe links (junctions).

This can be done using the relation

Trel e
(va)=A [+ -5, |=F 7,
V /A (61ab)
Uw4l=4§{0+@)(r¢ﬂ]ﬁd:43n

for the terminal and incident links. The B, are defined as B, =V, / (|l/k|+ 8), which takes into account

the flow direction. For the link term (f |//4)1 at link one in Figure Al .1 which is terminal to node 2, (61a)

becomes

(va)=ad[0+5) 0-8)] 7 o

For positive flow from node 1to node 2 in Figure Al .1,
=V/ M =1 (Al -7)

and Al -6 becomes
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(FVA) = A —[(2) o]{ }

(Al -8)

The asterisk is used to denote alink (junction) quantity. | f the flow direction reverses and goes from
node 2 to node 1then |/ is negative and

and Al -6 becomes

(FVA) = A —[(0) (2)]{ }

with £ donored from node two.

We can write

(FVA),
(fva),
(FVA),

as

(FvA)
(Fva), |=
(FvA),

21+ 8,) (1-5)]
s=[(1+8,) (1-5)]

' m|m< r\)|m< r\>|_S

V.
A353(1 _133)

This can be used with Al -5 as

T
—_

o [(+8) (-5 )][f }

2
f

n

f

I
w

e

w

f

0

V
151(1+ﬂ1) A1E1(1_:B1)

Y,
0 AZ(+5) A

0

V
2?2(1_132) f
A 50+8)]

K

(Al-9)

(Al -10)

(Al-11)

(Al -12)
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¥ 0 0] df/at
0 # 0|df/dt|+
0 0 #|dfdt
v
51(1+ﬁ1)
1 0 -
41 0 0
0 -1 1
V.
53( -5)

o
, 1] [vs)
Az(-5)|1%|=|05),
N AR
3(1+ﬂ3)

(Al-13)

where we have replaced the &, , with their values of 1.0. Performing the matrix multiplication on the

second term gives

¥ 0 Ofd/at
0 % Ofdi/at|+
0 0 ¥|d/at

AL(-A) AS(144)
R)AZIA)  AZ(-A)
ALs)  AL-RAS(4A)

If all the flows are positive as shown in Figure Al .1, then the various ,Bk are 1.0. Thisresultsin Al -14

becoming

£ 0 0fdf/at’
0 # 0| dat
0 0 ¥#|df/dt

AV,

AY
0

0
-AY
Al

Ay 77 [(1s),
0 | £ |+(S),
SAARICGEN

which the student should be able to verify from examination of Figure Al .1.

(Al -15)
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Appendix II Elementary Examples and Code Programming

This sectionillustrates test cases for elementary verification and validation and goes t hrough the code
programming. The student who understands the theory and the programming that goes into the code
will have a knowledge base that can be extended to more complex codes and code development.
Equation numbers used in this Appendix ref erence equation numbers in the main body of text.

The time dependent moment um equation is

aw, Kw?
o _ — -
//7— gcC[F/” "E/’d} PIAZ; (2/)/42} (50)
and at steady state
aw, i
at
which yields

W = 2/;;42 {gcc[//?’ —//?d]—pgAZj }

So, if we use atwo-node model as shown below and fix the pressures and ent halpies as boundary nodes,
with the pressures at the same value, the st eady st ate mass f low equation becomes

Z=10

BN

\A =0

Figure All.1 Head Term Test Case
2pA°
w=— % PEAZ,

Recall the definition of AZ, as AZ, = Z;’ —Z;‘, so for our problem shown above, AZ; will be negative.

The input deck for this problemis show below

0

elevation test case
10

21

.25

2

11

21

1121.1. 10.64
11115100 100
21115100 0 O
0

0
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infile 2node.txt. Use the set values of pressure and ent halpy and show that the “analytical” and code
solution are the same. Look in the code, identif y the input and repeat the calculation f or a height
dif ference of 20.0 feet. Use the code called f ull-matrx-square.f.

The following 3 node example is atest case to walk through the 3-equation code and test it for a
three- node model as shown below.

Figure All.2 Walk- through Test Case

Three input decks have been prepared, they are:

1. Sub-Cooled Liquid Test Case (testsub.dat)
2. Saturation Test Case (testsat.dat)
3. Super-heated steam Case (testsup.dat)

I nput File Listings
The following three decks are the input listings for the walk-t hrough.
testsub.txt

0

3 node test case

10

32

.25

2

11

31
1121..11.0.64
2231..11.0.64
11.1.100 100 00
21.1.100 100 00O
31.1.99 100 00
0

0
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//input explanation

iset, =1, open an extraoutput file, =0, don't open

title card

mprt,mprtflg, mprt=# of time steps per printout,mprtflg, chk for print
nvols,links nvols=# of volumes in problem, links=# of links

bn = number of boundary nodes

num,ipf (num) num=bn # , ipf (num)= 1, is a BN, ipf (num)=0, is not BN

Link | nput I nfo

k,from(k),t ooo(k),rlink(k),xk(k),xa(k),wlink(k),xi(k)
k=link number

from(k) =from or upstream node of link

tooo(k) =to or downstream node of link

rlink(k) =1, fully open link, =0, closed link

xk(k) =link form loss

wlink(k) =link mass flow rate

xi(k) =link inertia

Volume | nput | nfo

n,avol(n),vol(n),pvol(n),hvol(n),zvol(n),qvol(n)
n=node number

avol(n)= area of volume

vol(n) = volume of volume

pvol(n) = pressure of volume

hvol(n) = ent halpy of volume

zvol(n) = height of volume center

gvol(n) = heat source in volume

The explanation of the input is listed at the bottom of the input deck. The next two input decks are
for testsat.dat and testsup.dat.

Test sat .dat

0

3 node test case

10

32

.25

2

11

31

1121..1 1.0.64
2231..11.0.64
11.1.100 460 00
21.1.100 460 00
31.1..99 460 00



Test sup.dat

0

3 node test case

10

32

.25

2

11

31

1121..11.0.64
2231..11.0.64
11.1.100 1300 0O
21.1.100 1300 00
31.1.99 1300 00O

As an example we will go t hrough t he sub-cooled liquid case first. The student should have accessto a
debugger utility so asto be able to step through the code.

Upon executing the code, the first group of Fortran statements we see is:
open(unit=10,file= cv.out’ ,stat us="old’)
jdone=f alse.

call cvi

time =0.

do while(.not .jdone)
write(*,”) ’”’
write(*,*) ’ input # time steps, dt , mprt
read(*,*) nts,dt,mprt
if (nts.gt.0) then
doi=l,nts

time =time +dt

call cv

end do

else
jdone=true.
endif

end do
stop

end

The open statement opens the output file called cv.out. Notice this file is designat ed as “old” so it must
beinthe directory or an error will result.
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Next, alogical variable jdone is set to false. This is done so that we can perform a do while loop as
shown in the coding. As long as nts, the number of time steps is positive the code will keep going in the
do while loop. | f ntsis set to zero or negative the code will quit executing.

The first subroutine called is the initialization routine, used to read in the input dat a.
The next group of Fortran statements that are encountered gets the name of the input file.

character f name* 16, answer *8
logical f exist
c
c
5 write(*,1000)
1000 format (’Provide name of the input file:”)
read *, f name
write(*,”)
inquir e (file=f name,exist =f exist)
if (.not.fexist) then
write(*, *) fname,’ does not exist’
write(*, *) Do you want to quit (yes or no)?’
read (*,1001) answer
if (answer (1:1).eq.’y’.or.answer (1:1).eq.”Y’) stop
gotob
endif
open (9,file=f name,st at us="old’)
1001 format (a)

and should be self -explanat ory.

The next parameter read is iset which controls whether aplot fileis written out. Next we have some
of the constants inthe problem set up, which are:

c144 =144 in®/ft?
cgc = 322 ft/ss

which are used in the moment um equation

dw, . d Kw’?
I dtj :gCC[Pj —F ]—pgAZj—(szzj (50)

as g.,Cand g.

We also set the maximum number of nodes and links as:
maxnodes =25
maxlinks =60

The next group of statements are used f or reading some of the code boundary and initial conditions as:
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read(9,100) title
read(9,”) iset

-- set the print flag & initial value for printing

O 0O 0O O O

read(9,*) mprt,mprtflg

--- nvols is the number of nodes inthe problem
--- links is the number of links (junctions, elements) inthe problem

O 0O 0O O O

read(9,*) nvols,links

if (nvols.gt .maxnodes) write(*,*) ’exceeded maxnodes’
if (links.gt .maxlinks) write(*,*) 'exceeded maxlinks’

(o2 o]

dt isthe time step
read(9,*) dt

ipf (node) =1 ,the node is a boundary node
ipf (node) =0 ,the node is not a boundary node

-- initialize all nodal arrays used to zero

O 0O O 0O O o0

do 20 i = 1,maxnodes

S

S,
—
=

[

o

gevsi(i) =0
glink(i) =0
20 continue
c
c-- read # of boundary nodes, bn



c -- and read their values
¢ -- set the boundary nvols
c-- set to1for regular node b.c., for both pressure & ent halpy
c
read(9,*) bn
do21k =1,bn
read(9,*) num,ipf (num)
21 continue
c

The explanation is included in the coding above.

The next set of executable statements counts the number of boundary links and nodes, usef ul when we

gotoasymmetric matrix solver.

c
¢ --- count the number of boundary nodes with the ipf flag
c

nbndry =0
c
doi =1,nvols
if (ipf (i).eq.1) nbndry = nbndry + 1
end do
c

c --- # of internal nodes , intn =nvols - nbndry
c --- # of external nodes, nsgsextn =nbndry

c
intn = nvols - nbndry
nsgsextn = nbndry

c

c

c

c

c --- the topology is next, which is the element connection inf or mation
c --- along with the loss coef ficent xk, valve position rlink=rk,
¢ --- and the element (junction) initial flow wlink =w
C --- write an out put heading
c
c
c
c --- initialize t he half -bandwidt h hbw, which will be calculat ed
c --- fromthe element topology
c
hbw =0
c
¢ --- element (link) connections are placed in one dimensional array from(i)
c --- tooo(i) where i is the element number , iu denot es
c---thefrom
c --- node of the link and id denotes the to node of the link
c --- each link has a from and a to node as shown below

56



Next we zero out or initialize all the link quantities and read in the link dat a.

EIE R R S R R R S R R R R R R R R R R R R R R R R R R R R R R R R R R R R R

IR O R R R R R R R R EIE SRR SR R R R R R R R R R R R R R

element t opology
vlv positions,losses,link areas,f lows

EIE R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R

*hkkkhkkkkkkkkkk khkkkkhkkhkkhkkhkkhkhkhkkhkkhkkkkkkx

O 0O O O

c
c -- read in base admittance and multipliers
¢ -- rlink =multipliers or valve positions
c-- note:these are link quantites

C-- Xa=junction area

c-- xk =junction losses

Cc-- xi =junctioninertia

c
c -- zeroout the link quantities
c

do 22 i = 1,maxlinks

from(i) =0

tooo(i) =0

rlink(i) =0

xk(i) =0

xa(i) =0

wlink(i) =0

xi(i) =0

ylink(i) =0

zdh(i) =0

rhoj(i) =0
22 continue
c

do 24 i =1,links
read(9,*) k,f rom(k),t ooo(k),rlink(k),xk(k)
& xa(k),wlink(k),xi(k)

24  continue

c

which is described inthe fortran. For our problemthere are 2 links, 1and 2. Link 1is from node 1to
node 2 and link 2 is from node 2 to 3.

The next set of Fortranis included but only used when we need a symmetric pressure matrix solver.
After this, we read the nodal or volume dat a.



C -- read in nodal volumes note that 1st letter v denotes volume
c -- last letter denotes volume
c -- read in the pressure & ent halpy
c
¢ -- read the vol area,volume,pressure,ent halpy,
c -- node center elevations, and heat source qin
c
do 25 i =1,nvols
read(9,*) k,avol(k),vol(k),pvol(k),hvol (k)
&,zvol(k),qvol (k)
25 continue

c
Cc -- calculate elev changes
c

do 605 i =1,links

nu = f rom(i)

nd =t o000(i)

zdh(i) = zvol(nd) - zvol(nu)
605 continue

We next perform a check to make sure we do not have a zero volume case. Remember from our single
phase 2-equation code we do not want a zero on the diagonal of our pressure matrix.

c
c -- check for zero volume
c
do 606 i = 1,nvols
if (vol(i).gt.0.) goto 606
write(*,*) ’ zero volume for node =i
write(10,*)’ zero volume for node =",i
606 continue
c
c

We next performthe calculations for our initial ther modynamic properties by looping over all the
volumes.

c
c -- calculate the quality from ent halpy,pressure
c
doi =1,nvols
zcvhfg = hsvsp(pvol(i)) - hwvsp(pvol(i))
xvol(i) = (hvol(i) - hwvsp(pvol(i)))/ zcvhf g
if (xvol(i).lt.0.) xvol(i) =0.
if (xvol(i).gt.1.) xvol(i) = 1.
end do

The equation relevant to the above code is
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h—h (p)

" (0)=h (p) o7

wit h hsvsp(pvol(i)) - hwvsp(pvol(i)) as the sat enthalpies for steam and liquid. Notice that we set limits
on the equilibrium quality xvol. We next calculat e the specific volumes of the mixture with three
checks, one for sub-cooled, one for sat and one for superheated steamfor the three ther modynamic
regions.

c
c
c
c -- specific volume of mixture calc
c
do 562 i = 1,nvols
c
C -- do superheated steamfirst
c
if (xvol(i).ge.1.0) goto 559
c

if (xvol(i).gt.0.0) then

znumix = xvol(i)* svsvsp(pvol(i)) + (1.-xvol(i))*
&svwvsp(pvol(i))

dvol(i) = 1./ znumix

dvolm(i) = dvol(i)

tvol(i) =tvsp(pvol(i))

else

The above is for sat. Note that tvsp is the sat temperature as a function pressure.
c

C -- sp. volume , invert
c

This set is for sub- cooled properties since the test is for X .ge. 0.0. extvwwhp(hvol(i), pvol(i)) is

the sub- cooled property fortran function. Note the temperature is calculated also. The same
applies for the superheated steam.

dvol(i) = extvvwhp(hvol(i),pvol(i))
dvol(i) = 1./ dvol(i)
dvolm(i) = dvol(i)
tvol(i) = extttwhp(pvol(i),hvol(i))
endif
goto 562
559 dvol(i) = ext vvvhp(hvol(i),pvol(i))
dvol(i) = 1./ dvol(i)
dvolm(i) = dvol(i)
tvol(i) = extttvhp(pvol(i),hvol(i))
562 continue
The next group of infois for output and is self -explanatory.

59



Wethenreturntothe main program and input the number of time steps, the time step and however
many time steps that we want a printout with.

At last we call routine cv, the main routine f or executing the code.

We then see a group of datastatementsin F77 and initialization of the old time calculated variables to
the input variables. Also, the initial mixture density is set to the state density p, = p, (Ph) The only

way of knowing the mixture density isto set it tostate at the beginning of the program. We then call
the state routine to get the derivatives for the sub-cooled liquid state with our previous relations of

P
aps (P’h)_ vs __i%
oP  OP Vv OP
(99)
P
aps (P’h)_ Vs __i%
oh oh Vv’ oh
and the pressure (continuity) equation
C n+l
¥ —P
w 0P| e[y 0P} ) NN
dp ), oh ), oy
Ar{Z(aN,,Y," [P ])-Ya, '[P —ED]]=
t i (79)
¥, — Py
ap ap T Nog N
V= - +| V| Py+| ¥V hy - —5
N(pM ps )N [ ap ]N N [ ah ]N N O_N GN

+AtY a, D, —AtY a, D,

which uses the calculated state derivatives in these two equations in subroutine dprop. The dstands
for “derivative”.

c
C -- initialize arraysto zero
c

do 3 i =1,nvols

dvolo(i) = dvol(i)

dvol(i) =dvolm(i)

pvolo(i) = pvol(i)

hvolo(i) = hvol(i)
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3 continue
c
c
C -- get the derivatives and constit uitive values at all nodes
c -- the fluid temperatures for heat transfer
c
call dprops

The coding f or dprop is list ed below.

c
C -- get the derivatives at all nodes
c

We first loop over all the volumes, nvols.

do 555 m=1,nvols
c
¢ -- get the density derivative per equation (82)
c
C -- zdrgdp =-(1/nu)*(1/ nu)*(dnu/ dp)
¢ -- zdrgdp1 =derivative for node n1
C -- zdrgdp2 =derivative for node n2
¢ -- znugl =specific volume f or node n1
€ -- znug2 = specific volume for node n2

c

The above are the definitions

c

¢ -- the derivative of specific volume is done numerically
c

¢ -- the following logic avoids t he derivative property calls f or boundary nodes
¢ -- since they are the of f diagonal terms

c

c

c -- calculate the mixture specific volume, set pressures, quality

c -- enthalpy derivative first (zdrgdh1,2) , for n1,n2

C -- pressure second (zdrgdp1,2) , for n1,n2

c
if (xvol(m).ge.1.0) goto 551
c
c sat
c
if (xvol(m).gt.0.0) then
c
c

¢ -- call the derivative function f or two phase for drho/dp, drho/ dh, rho is density
c
¢ -- the dv/dp uses the dv/dh derivative, which is why the
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c -- two are done toget her
c
c -- dv/dh, derivative of specifc volume wrt ent halpy
c
drhomdh = (svsvsp(pvol(m)) - svwvsp(pvol(m)))
drhomdhh = drhomdh/ (hsvsp(pvol(m)) - hwvsp(pvol(m)))
drhomdh = -dvol(m)*dvol(m)*drhomdhh
c
Cc-- dothe pressure derivative
c
/I i r i i rrrr gy
c/II avidp function / /7771 HETETTTEEEETTEEELETTTEE LT
NNy,
¢
¢
c-- dv/dp, derivative of mixture specific volume wrt pressure
c
c -- calculate dvgdp
c
dcvdpd =1.
zcvpl = pvol(m) + dcvdpd
dcvdp = xvol(m)* (svsvsp(zcvp1) - svsvsp(pvol(m)))/ dcvdpd
dcvdp =dcvdp + (1.-xvol(m))*
&(svwvsp(zcvpl) - svwvsp(pvol(m)))/ dcvdpd
¢
c -- get dh/dp, derivative of mixture enthalpy wrt pressure
¢
dcvhdp = xvol(m)* (hsvsp(zcvp1) - hsvsp(pvol(m)))/ dcvdpd
dcvhdp = dcvhdp + (1. - xvol(m))*
&(hwvsp(zcvp1) - hwvsp(pvol(m)))/ dcvdpd
c
c-- get dvm/dp, partial derivative of spec volume wrt pressure
c -- remember that dv/dh is used here
¢
drhomdp = dcvdp - drhomdhh*dcvhdp
drhomdp = -dvol(m)*dvol(m)*drhomdp

zdrodh(m) = drhomdh
zdrodp(m) = drhomdp

c
else

c

c

c -- deriv of liq density wrt enthalpy

c

hvalr = hvol(lm) + 1.
rholr = extvwwhp(hvalr, pvol(m))
rholr = 1./rholr



rholl = extvwwhp(hvol(m), pvol(m))
rholl = 1./rholl
drholdh = rholr - rholl

c -- deriv of liq density wrt pressure

pvalr = pvol(m) + 1.
rholr1 = extvwwhp(hvol(m), pvalr)
rholr1 = 1. / rholr1
c rholl = extvwwhp(h, p)
c rholl = 1./rholl
drholdp = rholr1 - rholl

c
zdrodh(m) = drholdh
zdrodp(m) = drholdp
endif

c

c

goto 555

c

551 continue

c

/I Er i i i rrrill e
c///111111111 superheated enthalpy derivative drhogdh ////////111111]/¢c
/I rr i rr i i rrrill e
¢
c -- deriv of gas density wrt ent halpy
¢

hvalr =hvol(m) + 1.

rhogr = extvvvhp(hvalr,pvol(m))

rhogr =1./rhogr

rhogl = ext vwwhp(hvol(m),pvol(m))

rhogl = 1./ rhogl

drhogdh =rhogr - rhogl
c
c
/IR Er i rr i rr i i rrrill e
c///111111111 superheated pressure derivative drhogdp /////111111111]/¢c
/IR i i rr i rrrrll e
c
c -- deriv of gas density wrt pressure
c

pvalr =pvol(m) + 1.

rhogr = extvvvhp(hvol(m),pvalr)

rhogr =1./rhogr
¢ rhogl = extvwhp(h,p)
¢ rhogl =1/rhogl

drhogdp =rhogr - rhogl
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zdrodh(m) = drhogdh
zdrodp(m) =drhogdp

c
c
c
555 continue
c
return
end
c

The highlighted entries above are for the sub-cooled liquid state. Note that we are performing
numerical derivatives fromthe state functions. Actually, we do not need the derivatives for a boundary
volume. As we exit subroutine dpropwe see the coding

c

c -- init arraysto zero

c
do 14 i =1,nvols
sigma(i) = 0.
brhs(i) =0.
taurhs(i) =0.
do 14 j =1,nvols
amat (i,j) = 0.

14 continue

which initializes the arrays inin the energy equation and the matrix pressure equation.

n+ C n+ n
aNther++ev7(P -P") (64)
and
ap=b (1-1)

for the pressure matrix solution.

We next get the volume and link contributions to the energy equation fromthe relations:

64



ay

h]r\l,Jrl{(P:"L)N +At|:ZaN,r ow, _ZaN,i OW;]_AIZ ;Wl (l_ﬂr)

ay W, P,

+ArY : (l+ﬂi)}:At—Vq"A

” C n+ n
+At (Vq )N++LN7(P -pP") (63)

ay

(1= B

+(pVh") ATy, :

Ay

~Ar) ,2,-W,- 1+ 8,)n'

wit h the highlighted terms the ones in t he coding. One of the terms has been left out of the coding,

you will place back inthere. There are also some additional link terms that contribute to the diagonal.

What are they? Are they important for steady state? Why or why not ?

c
c -- get the volume contribution energy elimination terms
c
do 16 i = 1,nvols
sigma(i) = vol(i)*dvol(i)
c
taurhs(i) = dt*qvol(i)
& +vol(i)*dvol(i)* hvol(i)
c
16 continue
c
do 17 i =1,links
c
nd =t o000(i)
nu = f rom(i)
¢
Cc-- get beta
c
if (wlink(i).eq.0.) then
betaj(i) =0.
else
bet gj (i) = wlink(i)/ (abs(wlink(i)))
endif
c
beta =bet gj (i)
c
sigma(nd) = sigma(nd) +dt*
& (wlink(i) - wlink(i)*.5* (1-bet a))
sigma(nu) = sigma(nu) - dt*
& (wlink(i) - wlink(i)*.5* (1+bet a))

taurhs(nu) =taurhs(nu) - dt*.5*wlink(i)*
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&(1-bet a)* hvol(nd)
taurhs(nd) =taurhs(nd) +dt*.5*wlink(i)*
&(1+bet a)* hvol(nu)

17 continue

The above coding has built up the energy equation into the f orm of

n+ C n+ n
aNther++ev7(P -P") (64)
Theterm

C

n+l n
" p),
will be added in the pressure equation.

The next piece of coding adds in components from the pressure equation, first the diagonal matrix
contributions are performed.
c
c-- formthe global matrix entries
¢ -- volume contributions and then links
c -- diagonal contributions
c
do 19 i =1,nvols
amat (i,i) = vol(i)*zdrodp(i) +c144*vol(i)
& *vol(i)*zdrodh(i)/ (zcvj * sigma(i))
brhs(i) = vol(i)* zdrodp(i)* pvol(i) + vol(i)
& *zdrodh(i)* hvol(i) - vol(i)*zdrodh(i)*t aur hs(i)/ sigma(i)
& +eps*vol(i)* (dvolm(i) - dvolo(i))
& +c144*vol(i)* vol (i)* zdr odh(i)* pvol i)/
& (zcvj *sigma(i))
19 continue
c

performed according to to the highlighted terms below. Eps is usually set to 1.0 for the mass error. | f
the code gets larger pressures eps should be scaled back to 0.1.
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dp ] ap N
W - +| V= | Pl+| V2 h} -~ +—<
N(pM Ps )N ( p ]N N ( 7 lv N

+AtY ay D, —AtY a, D,
t i

The next piece of coding performs the link sums.

c
c-- add inlink contributions
c
do 20 i =1,links
c
¢ -- link density
c
c
nd =t o000(i)
nu = from(i)
c
rhoj (i) = .5* (dvol(nu) + dvol(nd))
& +.5*bet agj(i)* (dvol(nu) - dvol(nd))
c
c -- get they factor fromthe momentum equation
c
wabs = abs(wlink(i))
c
¢ -- limit r fromgoingto zero
c
if (rlink(i).le.tiny) then
ylink(i) = 0.
else
z = (xi(i) +.5*dt *xk(i)* wabs/
&(rhoj (i)*rlink(i)*rlink(i)*xa(i)*xa(i)))
z=10/z
ylink(i) = z*dt *cgc*c144
c
endif
c
d(i) = z*xi(i)* wlink(i)
& - dt*z*rhoj(i)*cgc* zdh(i)
c

67



c
amat (nd,nu) = amat (nd,nu) - dt *ylink(i)
amat (nu,nd) = amat (nu,nd) - dt *ylink(i)
amat (nd,nd) = amat (nd,nd) +dt *ylink(i)
amat (nu,nu) = amat (nu,nu) +dt *ylink(i)

c

brhs(nd) =brhs(nd) +dt *d(i)
brhs(nu) = brhs(nu) - dt *d(i)
c
20 continue
c
30 continue

We sum over the links, get the upstream (f rom) and downstream (t 0) node numbers connected by the
link. We then performthe donoring for the link density and calculat e t he valve (link) apert ure position.

Next we calculate the termsin
n+l __ yn U _ pD
Wit =¥ [P PP J+D,
compared to the full moment um equation of

U D n
_ Atg C[ P/ =P [+1w) - gNiAZ,

7 n+l

n+l

n

or

dw, K
LS c[p -p ez, [%'X'J =
J

We can see from the above equations what Yj" and Dj are and we can see from

C n+l
V=P
_‘Laps P]\7+1+ _VLaps NJ N _
oP oh ), oy

At[;(Yz" (27 -p" )L (e —Pf]}

Va (Py -0, +(¥a&] Py +(¥%] hy -+ —1
N N

op oh

+At) D, -AtY D,
t i

(50b)

(50Db)
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what the incident and terminal link sums are in t he coding.
The next piece of coding sets the boundary conditions:

c
c -- set boundary conditions
c
do 34 i =1,nvols
if (ipf (i).eq.1) then
brhs(i) = amat (i,i)*big* pvol(i)
amat (i,i) = amat (i,i)*big
else
continue
endif
34 continue

as discussed previously in section 3.5 as:
A boundary node can be initialized in the program by the use of an array, such as
I PF(1) =1, if node / is aboundary node
1 PF(I) =0, if not
The simplest way t o approach this is the method of Payne & I rons by writing the matrix relation as
Ay e Oy A B,
D : P, |=| B, (117)
Ayyy " Ayv oy PNV BNV

and to replace t he diagonal terms corresponding t o a boundary condition by
B(l)=BIG x Al) x A(l,1) (118)
A(l,l) = BIGx A(l,]) (119)

where Bl Gis a large number, B/ G=1. e+20 and I PF(l ) corresponds to a boundary node number. This can
be programmed as

doi=1,NV

if (I PF(1).eq.1) then
b(i)=BlI G*p(i)*a(i,i)
a(i,i)=Bl G*a(i,i)
else

continue

endif

enddo
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It isimportant to note that we do b(i)=BI G*p(i)*a(i, i) bef or e a(i, )=BI G*a(i, i), ot her wise we will get a
code error.

A squar e Gauss Elimination routine is be used from Brebbia. As we perform the Gauss Elimination the
ef fect of the BCis to divide by a very large number to set interveningtermsto zero except for the
boundary row. Other met hods can be used such as A(/,/)=1.0 f or boundary row / and
A(l,J)=A(J,1)=0 with Bl )=RA1). Other forms of matrix storage can be used such as bandwidth
storage.

We then call the gaussian elimination routine and recover the solution:

c
C --- call gaussian elimination routine
c

call gauss
c

¢ -- recover the solution fromthe rhs of the solver

¢ -- sumover all internal nodes

¢ -- if the node is a boundary node , t he value will not change
¢ -- if not, use the solver (solution) value

c
do 35 i =1,nvols
pvol(i) =brhs(i)
c
¢ -- limit the pressure to avoid steam table problems
c

if (pvol(i).Ilt .zcvep1) pvol(i) = zcvepd
35 continue
c

The gaussian routine places the solution in brhs vector. We also set the pressure above a lower limit.
Why?

After we obtain the pressure solution we can find the mass flows fromthe relation

W =y [PV—P.D]+D. (50b)
J J J J J

c

LI e i ririll e

c//I111111177111111111 section for flowsolution /////111111711117111¢
/T i i i iinrrrirll e

c
c -- solve for the flow, eq (81)
c

do 37 i =1,links
c
c

wlink(i) = ylink(i)* (pvol (f rom(i))-
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&pvol(tooo(i))) +d(i)
c
c
37 continue
c

Since we have the new time-step pressures, the new time f lows we can calculat e the updat ed ent halpy

from:
aN

h[r\l]+l{(p¥)N+Al’|:zaNt0Wt—ZaNi0Wi:|—Al’Z éwr (l_ﬂz)

a, w, P
+ArY L1+ B) =AtVq 1
Z, S (+5) Ly
” C n+ n
+At(Vq )N++LN7(P '-pP") (63)
a lwl u
+(p—VLh“)N+AtZ (-8 W
_AtZ ay:W; (1+ﬁi)hid
and
n+l __ C n+l n
ohy —rN+%V7(P -P") (64)
as
C

/I i i rrniirrrrilllc

/11Tl enthalpy solution  ///7/111717111171711117171¢

/I i i rrririrrrrilllc

c

c

¢ -- solve for the enthalpy

c

c

c

C -- initialize the global matrix & rhs vectors

C -- rows ->nodes, columns ->bandwidt h

c-- notethat thisis diagonal matrix assembly

c

c

c

B R D L P R T
do 39 i =1,nvols

c

Cc-- rhsterm
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brhs(i) = vol(i)*dvol(i)* hvol(i)
& +dt*qvol(i)
& +c144*vol(i)* (pvol(i)-pvolo(i))/ zcvj

c
c -- diagonal term
c
diag(i) = vol(i)*dvol(i)
c

39 continue

C*********************************************************************

¢ link (junction) enthalpies

c
do 41i =1,links
c
c -- get the upstream & downst ream node numbers
c
nu = from(i)
nd =t o00(i)
c
C -- donor junction density
c
if (wlink(i).ne.0.) goto 43
beta=0.
goto45

43 Dbeta=wlink(i)/ (abs(wlink(i)))
45 continue

c

c-- computetheret of theterms

c -- note: diag is a vector not a matrix

c
diag(nd) =diag(nd) +dt*wlink(i)* (1. - .5*(
&1.- beta))
diag(nu) =diag(nu) - dt *wlink(i)* (1. - .5*(
&1.+beta))
brhs(nd) =brhs(nd) +dt *wlink(i)*.5* hvol (nu)
&* (1.+beta)
brhs(nu) = brhs(nu) - dt *wlink(i)*.5* hvol(nd)
&*(1.-bet a)

41 continue

C***********************************************************************

c
¢ compute qualities
c
do 49 i =1,nvols
if (ipf (i).eq.0) then
hvol(i) = brhs(i)/ diag(i)
endif
zcvhfg = hsvsp(pvol(i)) - hwvsp(pvol(i))
xvol(i) = (hvol(i) - hwvsp(pvol(i)))/ zcvhf g

72



if (xvol(i).lt.0.) xvol(i) =0.
if (xvol(i).gt.1.) xvol(i) = 1.

¢

49 continue

c

Note that we solve for the equilibrium qualities f or each node as part of the solution process.

We also solve for the state densities, void fractions and t emperatures from the coding

c
c -- get the nodal densities
c

do 51i =1,nvols
c
c -- get the densities fromthe pressures, state equation, section 5.0
c

if (xvol(i).ge.1.0) goto 53
c
c sat
c

if (xvol(i).gt.0.0) then
vnug = svsvsp(pvol(i))
vnuf = svwvsp(pvol(i))
zcvnum = xvol(i)* vnug +
& (1.-xvol(i))* vnuf

dvol(i) = 1./zcvnum
alpvol(i) = dvol(i)*xvol(i)* vhug
tvol(i) =tvsp(pvol(i))
else

¢ subcooled
dvol(i) = extvvwhp(hvol(i),pvol(i))
dvol(i) = 1./ dvol(i)

alpvol(i) =0.0
tvol(i) = extttwhp(pvol(i),hvol(i))
endif
c
goto51

C superheated
53 dvol(i) = extvvvhp(hvol(i),pvol(i))
dvol(i) = 1./ dvol(i)
alpvol(i) = 1.0
tvol(i) = extttvhp(pvol(i),hvol(i))
c
51 continue
c
c



which parallel the state relations given earlier of

M pV- P

(91)

The densities are defined for three regions:

X,<0.0 for subcooled liquid
0.0< X, <1.0 for stauration mixture (100)
X,21.0 forsuperheated steam

For the two-phase region:

v=X,v, (P)+(1-X,)v,(P) (101)

Finally, the mixture density equation is solved as:

NdCZN :Zamowz_zamowi (56b)

c
/I i i rrrr gy
/I mixture mass solution/////111111111111100171111717
NNy,
c
c
c -- get the diagonal volume contributions
c-- for thelhs/rhs of the mixture density equation
c-- notethat thisis diagonal matrix assembly
c
c
do 55 i =1,nvols
brhs(i) = dvol(i)* vol(i)
diag(i) = vol(i)
55 continue
c
c
c
do 71i =1,links
c
c -- get the upstream & downst ream node numbers
¢
nu = f rom(i)
nd =t o00(i)
¢
¢ -- if the upstream or downstream node is a boundary node,
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c -- don’t add in any flow contribution
Cc -- doesn't matter since we only use int er nal nodes
c -- for mixture density inthe next step

c
brhs(nu) =brhs(nu) - dt *wlink(i)
brhs(nd) =brhs(nd) +dt *wlink(i)
c
71 continue
c

c -- get the density solution, set boundary nodes to state density
c

do 73 i =1,nvols

if (ipf (i).eq.0) then

dvolm(i) = brhs(i)/ diag(i)

else
dvolm(i) = dvol(i)
endif
c
if (dvolm(i).It.0.) dvolm(i) = dvol(i)
c
73 continue
¢

We then call the output routine and repeat the process.
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